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LElTER TO THE EDITOR 

Graph bipartitioning and spin glasses on a random network of 
fixed finite valence 

K Y M Wong and D Sherrington 
Department of Physics, Imperial College of Science and Technology, Prince Consort Road, 
London SW7 2BZ, UK 

Received 16 March 1987 

Abstract. We study the problem of bipartitioning a random graph of fixed finite valence 
using a mean-field replica-symmetric theory of an king ferromagnet with zero magnetisation 
constraint. The thermodynamics is determined by the probability distribution of an 
auxiliary field. The expression for the ground-state energy agrees with that proposed by 
Mtzard and Parisi using a cavity-field method, but their expression for the fraction of 
crazy spins is reinterpreted. 

Recently, techniques from the theory of spin glasses have been increasingly applied 
to the study of complex optimisation problems. In the so-called graph bipartitioning 
problem [ 11, we have a set of randomly connected vertices and the issue is to partition 
them into two subsets of equal size in such a way that the number of connections 
between the two sets is minimised. This problem can be mapped into that of finding 
the ground state of a randomly connected ferromagnetic Ising model subject to the 
constraint that the total magnetisation is zero [ 1,2]. For the case of extensive con- 
nectivity, in which the probability p that any two sites are connected is independent 
of the total number of sites N, the problem is solved [ l ,  31 by mapping onto the 
infinite-range Sherrington-Kirkpatrick model of a spin glass [4,5]. For the case of 
finite (but not fixed) valence [ 6 ] ,  in which bonds between vertices are distributed with 
independent random probability p = c /  N, c independent of N, the problem is equivalent 
to finding the ground state of the Viana-Bray model of a dilute spin glass [7,8]. On 
the other hand, numerical results have been obtained for the case of finite and fixed 
valence, in which every site has the same coordination number c [9]. Although estimates 
for this case have been given by extending the theory for average valence [6] or by 
mapping onto the spin glass on a Bethe lattice [lo], no complete theory for the fixed 
finite-valenced network has yet been presented. 

In this letter we give a mean-field theory of the problem with fixed finite valence. 
In many aspects, our theory is very similar to that for the average finite valence [6,8]. 
In the latter case, the ground-state properties are determined by the local field distribu- 
tion, whose weighted moments give the order parameters { Qk} in the replica symmetric 
ansatz. In the case of fixed finite valence, however, we are going to show that the 
order parameters {QJ are not the weighted moments of the local field h, but those of 
an auxiliary field @. This auxiliary field @ at a site, being interpreted as the effective 
field due to ( c  - 1) of its c neighbouringt sites, is analogous to the effective field due 

t We use the expression ‘neighbour’ to refer to a site/spin to which there is a single-edge connection. No 
implication of spatial locality is intended, or appropriate. 
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to descendents on a Bethe lattice [ll]. Indeed, our approach confirms that the local 
structure of the network is tree like, and the picture of a Bethe lattice [lo] is a valid 
local description of the system in the thermodynamic limit. We derive an expression 
for the ground-state energy which agrees with a previous proposal [6], but the corre- 
sponding expression for the fraction of crazy spins has to be reinterpreted [6]. 

Before proceeding, it is expedient to write down the recursion relation on a Bethe 
lattice for later comparison [lo]. The effective field @ due to the (c-1) descendents 
of a site obeys the distribution function T ( @ )  given by 

1 c- l  

m ( @ )  = h' (1 dQi n ( O i ) ) 6 (  a-- tanh-'(tanh pJ tanh pai) 
i = l  P i = l  

where J is the coupling strength between neighbouring sites, and we have assumed 
that the sites are sufficiently distant from the boundary sites so that a fixed-point 
configuration has been reached. The total field h at a site then obeys the distribution 
function P ( h )  given by 

P ( h )  = fi (1 d@, r (Qi) )6(  h -- 
i = l  

For a symmetric distribution of fields, the fraction p o  of crazy spins (i.e. spins located 
at sites having zero local field) at zero temperature should then be given by 

C! int (c/2)  

where mo is the solution of the equation 

As we shall see, the same relations exist in our mean-field theory, showing that the 
Bethe spin glass may provide a framework for interpreting the theory. 

The major mathematical difficulty for a randomly connected network is that sites 
are not inherently equivalent. This is surpassed by considering configuration averages 
over all networks of fixed valence c. Thus we start by considering the Ising ferromagnet 

H = -E UJSiSj (4) 
(U) 

where aU = 0 or 1, satisfying 

c a U = c  for all i. 
j t i  

Each set of {aU} satisfying ( 5 )  then corresponds to a particular configuration of the 
network. 

In the graph bipartitioning problem, each of the N Ising spins takes the value +1 
if it belongs to one subset and -1  if it belongs to the other. The number of connections 
N,, between the two subsets, which is the quantity to be minimised, is related to the 
energy E of the Ising ferromagnet via the relation 

E =2Nct-;cN. (6) 
Since the two subsets have to be of equal size, the total magnetisation is restricted to 
be zero. 
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We shall now derive the configuration-averaged free energy of this system using 
the replica method [ 121. This requires us to calculate the configuration average of the 
nth power of the partition function given by 

where Trh denotes the restricted trace 

and N is the normalising factor, which is the total number of network configurations, 
i.e. 

As a first step towards evaluating these expressions, let us consider the normalising 
factor N first. Introducing the integral representation of the delta function, we have 

N=n I ( [02q2exp(-icAi) n (l+exp[i(hi+Aj)]) 

=! ( jozq dh,exp(-icAi) 27r 

( U )  

Using Gaussian identities N can be further expressed in terms of a single site integral, 
m 

m = l  
exp(-q:/2m)) [ Jo2= e exp( -icA) 

x exp( f' l [ n m q m  exp(imA) -;(-l)'"-' exp(2imA)l 
m = l  m 

where 

1 m odd 
n m = {  m even. 

The integral over A can be simplified by the substitution z=e'*, and the standard 
method of residues give a polynomial in terms of q1 up to qc. The variables from qctl 
upward are therefore irrelevant. The integrals over q1 to qc are now performed by the 
method of steepest descent and in the limit N+m the only contributing term in the 
polynomial is qflc!. Therefore 

- exp{ N[ic(ln CN - 1) - In c !I}. (12) - 
We can now evaluate 2" in the same manner. From (7), we have 
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Expressing the term involving spin variables as 

cosh mpJ( 1 + SSSP tanh m p J )  

and going through the steps as above, we arrive at 

dq*m !! [ (2~rm/cosh" mpJ tanh mpJ)'" 

coshn mpJ tanh m p J  
2m 

x exp( - 

cosh" m p J  tanh' m p J  
2 m  

x exp( - 

+ f q: + tanh mpJ 2 q;Sn cosh"mpJ 
m = ~  111 a 

(exp(mpJ))" exp(2imh) 
a < P  

(15) 

where we have replaced the restricted trace Tr& by a global soft constraint term 
i J l ( X ,  Si)' in the Hamiltonian [ 11. When compared with the case for average finite 
valence [8], each order parameter is further decomposed into components indexed by 
m. Fortunately, following the text discussion below ( 1  l ) ,  only the m = 1 components 
are relevant in the thermodynamic limit. This permits us to write 

dqf dq? '!? I (2r/cosh" pJ tanh PJ)'" 2r /coshn pJ tanh' pJ)'/2 ' * * 

xexp[ -iPJ1(x") '- icoshnPJ( (qY)'+tanh pJ a (q:)' 

+tanh2pJ  1 (qfP)'+ . . .)+ N l n T r , X J  
Q < P  
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where 

L797 

qy+ tanh pJ c qf S" 
OL 

We note in passing that, apart from normalising factors, (16b)  corresponds to the cth 
term of the power series expansion in the average finite-valence expression [8]. 

The integrals are now evaluated using the method of steepest descent. At the 
extremum of the integrand, we have 

x* = iN(Sw) 

01 
" = cosh" PJ 

cN 
cosh"pJ 

cosh" pJ 

(1 

( S * (  qy+tanh pJ 1 qfS" +. . . 9: = 

q y  = 
LI 

etc, where 

(A) = Tr, AX/Tr, X .  (18)  
Already we note an important difference from the Sherrington-Kirkpatrick [4] and 
Viana-Bray [7] spin glasses. In those models, the order parameters are the unweighted 
thermodynamic averages of the spin variables, whereas in our case they are the 
thermodynamic averages of the spin variables weighted by the factor (qy+ 
tanh p J  I;, qfS" +. . . ) - I .  It is this difference that eventually causes the ground-state 
properties to be determined by the auxiliary field distribution, in contrast to the 
dependence on the local field distribution in the average valence case. 

We now solve the problem within the framework of the replica-symmetric ansatz. 
The order parameters in (17) are assumed to be independent of the replica indices, so 
that 

x* = x  

qy=(coshnpJ)1'2Q0 cN 

q f = (  cN )'"Q' 
coshn pJ 

q'y = (cosh" pJ) Q2 

cN ' I 2  

etc. Since the Qk are the weighted averages of the spin variables, it is natural to 
introduce the auxiliary field distribution r(@)6*8*12t according to 

(20) Qk = I d@ T ( @ )  tanhk p@. 

T An alternative procedure would be to use a global order parameter function, such as introduced by De 
Dominicis and Mottishaw [13]. 
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This facilitates a simplification of the extremum conditions (17), which become, in the 
limit n + 0, 

tanh-'(tanh p J  tanh pQI) 

tanh-'(tanh p J  tanh 

iN 
c - l  

Qk = (1 d@., r(Q,) 

Although we do not solve the equation for x in full generality, it is sufficient to note 
that x = 0, together with T(@) an even function of @, satisfies equations (20) and (21). 
This is in accordance with the argument that the zero-magnetisation constraint is 
irrelevant to the ground state of the spin glass [l] .  Combining (20) and (216) permits 
us to write 

r(@) = fil (1 dQi , ( Q i ) ) S (  @ - -  
i = l  

Note the formal identity between (22) and ( 1 ) .  This shows that the auxiliary field Q, 
is the equivalent of the field due to descendents in the Bethe lattice. 

It is instructive to determine the relation between the auxiliary field distribution 
~ ( 0 )  and the local field distribution P ( h ) ,  which is related to the thermodynamic 
average of spins by 

( P i  . . . Spk) = 1 dh P ( h )  tanhk ph.  (23) 

Performing the thermodynamic average explicitly, we finally arrive at 

P ( h )  = fi (J d a i  r ( @ i ) ) S (  h -- 
i = l  

Again, note the formal identity between (24) and (2), confirming the validity of the 
picture of a tree-like structure in the random network. 

At T = 0, the probability ro that the auxiliary field is zero satisfies (36) and is given 
in [6,10]. Note, however, that this probability is distinct from p o  given in (3a),  which 
is the probability that the local field is zero or, equivalently, the probability of a spin 
being crazy. Thus, for instance, @ = 0 does not necessarily imply an ill defined spin, 
but @ = * J  may result in one. Both ro and po are given in table 1 for 3 s c s 8.  

Finally, we evaluate the free energy per site according to the replica theory [14]: - 
Z"-1 

- Pf= lim lim - (25) 
N - m n - 0  Nn ' 

Table 1. Table of zero auxiliary field distribution (vO), zero local field distribution ( p o )  
and ground-state energy for 3 S c s 8. 

C 

3 4 5 6 7 8 

T O  0.333 0.200 0.229 0.167 0.183 0.146 
Po 0.259 0.232 0.188 0.184 0.156 0.156 

- E o / N J  0.852 0.744 0.676 0.619 0.580 0.540 
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After some algebra, we obtain 

- / 3 f = f c  In cosh p J + S c  d@ T ( @ )  ln(1 -tanh2 p J  tanh’ p @ )  I 
-fc d o l  d a 2  7r(@1)~(@2)  In( 1 + tanh /3J tanh /3QI tanh /3@*) 

+ dh P( h )  In 2 cosh p h  ( 2 6 )  5 
and the ground-state energy per site is found to be 

Eo C 

- - = f c n ( 0 ) ’ + 2  P ( r ) r .  
NJ r = l  

This formula can be shown to be equivalent to that proposed by MCzard and Parisi 
[ 6 ] .  The ground-state energies per bond for 3 d c d 8 are listed in table 1, and are of 
the order of 1-3% lower than the simulation results [9]. 

We have derived the above result for an Ising ferromagnet with a zero-magnetisation 
constraint. The generalisation to an exchange-random Ising spin glass is straightfor- 
ward: the corresponding values for a(@), P ( h )  and -/3f are obtained by taking the 
disorder average over J in equations ( 2 2 ) ,  (24) and ( 2 7 ) ,  respectively. 

In summary, we have studied the graph bipartitioning and spin glasses on a 
randomly connected network of fixed finite valence. We find that the ground-state 
properties are determined by the probability distribution of the auxiliary field, 
confirming the picture of the Bethe lattice on the network. We have also developed 
techniques for the study of fixed-valence networks, and it is hoped that the study of 
other issues such as replica symmetry breaking on these networks will further our 
understanding of the graph bipartitioning problem and spin glasses. 

We thank M MCzard, G Parisi, I Kanter and H Sompolinsky for sending their preprints 
to us. This work was supported by a research grant from the Science and Engineering 
Research Council of the United Kingdom. 

Note added in proof: In equations (3a), (3b) and (27), we have assumed that @ and h are integral multiples 
of J. It has been drawn to our attention by D J Thouless and P Mottishaw that such solutions are unstable. 
The stable solutions have a continuous distribution, but numerical investigation, to be reported elsewhere, 
has shown that the ground-state energies are only slightly altered. 
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